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Eccentric Poisson-Boltzmann cell model
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~Received 11 April 2000!

We solve the nonlinear Poisson-Boltzmann equation around a charged colloidal sphere in an electrolyte that
is confined in a cell. The colloid has an eccentric position inside the confining sphere. This models the situation
in a highly concentrated charge-stabilized colloidal suspension, where a single colloid simultaneously interacts
with the whole cage of neighboring colloids. We calculate the ion density profiles, the free energy, and the
osmotic pressure as a function of the shifting position. We express the total force acting on the particle as a
sum of pair contributions and compare the resulting pair interaction potential law with the standard Derjaguin-
Landau-Verwey-Overbeck expression.

PACS number~s!: 61.20.Qg, 82.45.1z
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I. INTRODUCTION

In charged colloidal or polyelectrolyte solutions, there a
three different types of particles: polyions, microions, a
the molecules of the solvent. Due to the enormous size
charge asymmetry between these three species, not a
them are equally important for the interpretation of the e
perimental data. In light scattering experiments, for instan
it is only the time-averaged positions of the mesosco
polyions that is of significance to the measured structure
tors. In many cases it is therefore sufficient to give an eff
tive one-component description of the mixture, that is,
treat the polyion plus its microionic atmosphere as o
dressed particle that moves in a dielectric medium@1#. In this
approach, the central question is to know about the solv
and microion-averaged or effective potential between th
dressed particles@2–4#.

In highly diluted suspensions with added salt, the collo
interact essentially by pairs. The effective pair poten
which results from the overlap of two ionic double layers c
be calculated in a good approximation~for monovalent ions!
from the nonlinear Poisson-Boltzmann~PB! equation@5,6#.
At large separation, the weak overlap or linear superposi
approximation applies and the potential takes the us
screened-Coulombic Yukawa Derjaguin-Landau-Verw
Overbeck ~DLVO! form @7#. In this expression, the bar
charge is replaced by the effective value which accounts
the electrostatic condensation of counterions near the
loids and which can be deduced from the PB solution aro
one isolated particle@8,9,1,10#. The DLVO potential has
been extensively used to describe the phase behavior@11#,
structure@12,13#, dynamics@14#, and electrokinetic proper
ties @15# of charged colloidal suspensions, even outside
dilute regime. However, for concentrated and/or salt-free
lutions, this asymptotic pair potential becomes, in princip
incorrect: first, the linear superposition approximation bre
down due to the strong overlap of the double layers and
the condensation shells at short separations@5#; more impor-
tantly, many simultaneously overlapping layers lead to eff
tive forces that are essentially many body in nature; i.e.,
PRE 621063-651X/2000/62~2!/2493~8!/$15.00
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force between two particles will depend also on the positio
of all other polyions. Thus, the problem becomes rather
volved, not only for the technical problems posed by t
demanding nonlinear PB equation, but also because, in p
ciple, the total interaction can no longer be split into pairw
contributions.

In the present article we concentrate on this high conc
tration limit. In a complete PB theory one would have
solve the nonlinear PB equation in the interstitial regio
between all colloidal spheres for each possible colloidal c
figuration. This requires a formidable numerical treatme
@16,17#. We rather investigate a simpler geometry made o
single colloid interacting with the entire cage of surroundi
polyions. To model this situation, we consider a charg
colloid located at eccentric positions inside a hollow charg
sphere. The inhomogeneous electrolyte fills the volume
tween the two nonconcentric surfaces. The confining sph
represents the fixed cage of next neighbors of a colloid in
suspension. Next to this outer sphere another double laye
microions will be formed, which may be regarded as t
superposed double layers of all neighbors defining the ca
The overlap of this concave layer with the convex lay
around the center colloid leads to a repulsive force wh
drives the colloid back toward the center of the cell. W
calculate this force and related quantities by solving the
equation for the electrostatic potential and ionic profiles
the eccentric cell geometry. A similar problem can be fou
in an old study by Ohtsuki et al.@18# where the electrostatic
potential around a particle in an ordered latex under a de
mation has been numerically calculated.

The total force acting on the central colloid is not a p
force but the accumulated force of all neighbors onto
center colloid. However, we suggest a way how this fo
can again be decomposed into pair forces. The resulting
potentials can be compared to the pair potentials derive
the conventional way from the overlap of two spheric
double layers with positive curvature. We thus end up w
an effective ion-averaged potential for two colloids intera
ing in the immediate neighborhood of other colloids, the
fluence of whose double layers on the interaction of the t
2493 ©2000 The American Physical Society
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colloids we explicitly take into account. This approach,
course, makes sense only in highly concentrated suspens
From these considerations, it should be clear that we hav
expect a qualitatively different behavior of the effective i
teraction.

After setting the stage for our considerations in Sec. II,
introduce in Sec. III our model, which we call the ‘‘eccentr
cell model,’’ and present in Sec. IV the calculated dens
profiles. From these, we determine in Sec. V the forces
integrating the stress tensor, and decompose these into
forces in Sec. VI. Before the conclusion, we shortly discu
in Sec. VII the osmotic pressure of the suspension in
eccentric cell model.

II. POISSON-BOLTZMANN THEORY

We consider a colloidal suspension made ofNp spherical
charged colloids. Their density isnp5Np /V51/VWS, where
VWS is the volume per colloid or, in the crystalline phase, t
volume of the Wigner-Seitz~WS! cell. Each colloidal par-
ticle bears a charge of1Ze. Assuming, for simplicity, that
the charge of a counterion is2e, each colloid thus contrib-
utesZ counterions to the solution, giving in totalNc5ZNp
counterions and hence a counterion density ofnc5Nc /V.
Additionally, we allow for a binary symmetrical 1/21 salt of
concentrationns5S/VWS to be present whereS is the num-
ber of positive/negative salt ions in the Wigner-Seitz c
volume. As usual, the solvent~water! is assumed to be a
continuum of dielectric constante ~primitive model!, while
the microions are considered to be pointlike particles.

Mapping the initial multicomponent system onto an effe
tive one-component system made of dressed colloids,
may write the total free energy for a given position$RW i% of
all Np colloidal particles in the formF($RW i%). The average
over the degrees of freedom of the microions, implici
taken into account inF, is performed here within the mean
field PB approximation. The microion-microion correlatio
are neglected and the inhomogeneous ionic density pro
r1(rW) andr2(rW) in the external field of the macroions~fixed
at $RW i%) are related to the normalized averaged electrost
potential F through the mean-field Boltzmann relation
r7(rW)}exp@6F(rW)#. The PB equation reads

¹2F~rW !54plB@r2~rW !2r1~rW !#

54plBF ~ns1nc!
eF(rW)

^eF(rW)&
2ns

e2F(rW)

^e2F(rW)&
G , ~1!

whereF5ebC is the electrostatic potential,lB5e2b/e the
Bjerrum length, andb51/kBT the inverse temperature. Th
volume averages~brackets! guarantee the total ionic conse
vation ~fixed salinity inside the solution!. The PB total free
energy of the solution which depends on the colloidal c
figuration reads@7#

F~$RW i%!5E drW8F e

8p
E2~rW8!

1 (
a56

ra~rW8!kBT@ ln$L3ra~rW8!%21#G , ~2!
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with EW being the total electric field andL the thermal de
Broglie wavelength. The first term is the Coulomb energy
the charged colloids and their microions, while the seco
term takes account of the ideal-gas entropy of mixture of
discrete microions. The Boltzmann profiles are those wh
minimize the free energy of Eq.~2! seen as a functional o
the variational densitiesr6(r ) ~at fixed total ionic content!.

The forceFW j acting on colloid j derives from the free
energy:

FW j52¹W jF~$RW i%!. ~3!

Both the free energyF and the forcesFW j are complex
Np-body quantities which, in general, cannot be decompo
as sums of pair contributions. Meanwhile, for conceptual a
practical reasons, it is interesting to define the effective p
potentialve f f which, when being summed over all interpa
ticle distancesRi j 5uRW i2RW j u, gives the best approximatio
possible to the energy of Eq.~2!,

F~$RW i%!'F01(
i , j

ve f f~Ri j !. ~4!

The termF0, independent of the colloidal positions, is irre
evant for the interactions and forces@20,21#.

In the weak overlap approximation valid at large interp
ticle distances, the microionic density distributions turn o
to be given by sums over independent distributions aro
isolated colloids and the pairwise decomposition, Eq.~4!,
applies. Placing this sum into the free energy expression,
~2!, gives for the effective pair potential the DLVO form

FIG. 1. The eccentric cell model: a positively charged colloid
shifted a distanceX from the center of a spherical cage. The ou
surface bears a positive surface charge densitysout . The cavity
radius R852R2a where a is the radius of the colloid andR is
defined through the volume per colloid,VWS54pR3/3. The shell of
next neighbors is at 2R.
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bve f f~R!5S Ze f f

eka

11kaD 2

lB

e2kR

R
, R.2a, ~5!

with a being the radius of the colloidal sphere andk
5@4plB(nc12ns)#1/2 the inverse screening length.

The effective chargeZe f f in Eq. ~5! is equal to the bare
chargeZ within the linear PB~Debye-Hückel! theory and is
much lower thanZ in the nonlinear theory due to the cou
terionic condensation. At small interparticle distances
served in concentrated solutions, the DLVO potential is,
principle, less valid and the pairwise decomposition, Eq.~4!,
though practical, is more approximative.

III. ECCENTRIC CELL MODEL

We see from Eq.~2! that, in principle, one has to solve th
multicentered PB equation for every possible colloidal co
figuration. Though not impossible@16,17#, this can only be
achieved with a large scale computer simulation. Contrar
that, the basic idea of the PB cell model is convincingly ea
There, only one specific colloidal configuration is cons
ered, namely, the fcc configuration of the crystalline pha
so that due to the translational symmetry the nonlinear
equation for the microionic density distribution needs to
calculated in one WS cell only.

Assuming the WS cell to be of spherical shape~radiusR
defined via 4pR3/35VWS), the problem then reduces t
solving the radial one-dimensional PB equation and on
left with the following von Neumann boundary value pro
lem ~BVP!:

1

r 2
] r r

2] rF~r !54plBF ~ns1nc!
eF(rW)

^eF(rW)&
2ns

e2F(rW)

^e2F(rW)&
G ,

] rF~r !ur 5R50, ~6!

] rF~r !ur 5a52
ZlB

a2
,

where the first boundary value reflects the fact that the
sphere as a whole is electrically neutral~all Z counterions are
insideR) and the second is just the constant-charge bou
ary condition at the colloid surface commonly used for c
loidal particles. This classical cell approach is powerful
derive ionic profiles, osmotic pressures, and effect
charges in concentrated solutions. On the other hand, du
its spherical symmetry, it is unsuited for deriving direct
colloidal forces and colloid-colloid interactions.

The idea of our eccentric cell model~see Fig. 1! may be
seen as an extension of this centric PB cell model. We a
start from the assumption that all macroions are initially
cated at fcc lattice sites. However, in contrast to the conv
tional cell model, we allow one colloid to be shifted a di
tanceX from its center position. Calculating for eachX the
PB profiles, one can then determineF, Eq. ~2!, and, from its
derivative, Eq.~3!, directly the force acting on the colloid.

Of crucial importance is a physically motivated choice
the boundary condition: The boundary condition atR in Eq.
~6! cannot be copied in the eccentric geometry. Since
central colloid is shifted a distanceX while the 12 neighbors
-
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are kept fixed, one expects that the normal electric field
zero at r .R in the sense of the shift and atr ,R in the
opposite sense (r is measured from the center of the cel!.
We therefore enlarge the spherical cell to a radiusR852R
2a and consider thewhole cageconsisting of all 12 neigh-
bors ~at 2R) around the central colloid, rather than the ce
tral WS cell alone, because the position of the whole ca
will certainly not depend onX. The 12 neighbors are re
placed by a spherical charged surface atR8 that is concentric
with the original WS sphere~see Fig. 1!. This leads to the
picture presented in the introduction: a single colloid trapp
in the spherical cage of its nearest neighbors. The proce
in practice is the following: in a first step, the centered P
solution F(r ) of the BVP in Eq. ~6!, unperturbed in the
central WS cellr ,R, is extended untilr 5R8 by integrating
the same PB equation fromr 5R to r 5R8. The nonzero
electric field atr 5R8 gives, with the Gauss theorem, th
surface charge densitysout of the outer cell surface~due to
the finite spherical curvature of the configuration,sout dif-
fers from the colloidal surface charge density atr 5a). Then,
in the eccentric geometry, this charge density and the co
sponding normal electric field atr 5R8 are kept fixed as the
central colloid is shifted away from its initial position. Thi
choice for the boundary condition matches closely what h
pens in a real cage while keeping the spherical cell geome

Since there is still a rotational symmetry about the li
joining the center of the WS sphere and the center of
colloidal particle, Eq.~1! for our case is a differential equa
tion in two spatial variables. As has been done by oth
before@5,22–24#, we express the PB equation in bispheric
coordinates@25# since they are symmetry adapted to the ge
metric situation of the eccentric cell model. The BVP for t
eccentric cell model then reads

FIG. 2. ~a! Typical ion density distribution as calculated from
the mean-field Poisson-Boltzmann equation for a colloidal mac
ion in the eccentric geometry (Z5600, a5500 Å , volume fraction
f50.05, X50.69R, S50, lB57.2 Å ). ~b! A cut at y50 along
the x axis for the distribution of~a!. Units are inR throughout.
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~coshh2cosu!3

b2sinu
S ]h

sinu

coshh2cosu
]h1]u

sinu

coshh2cosu
]uDF~h,u!54plBF ~ns1nc!

eF(h,u)

^eF&
2ns

e2F(h,u)

^e2F&
G ,

]uF~h,u!uu5050,

]uF~h,u!uu5p50,

]hF~h,u!uh5h0
52

ZlB

a2

b

coshh2cosu
,

]hF~h,u!uh5h1
54psoutlB

b

coshh2cosu
,
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b5a sinhh0 . ~8!

Like spherical coordinates, bispherical coordinates have
angle coordinatesu andc and a third coordinateh that has
the character of a radius; i.e., the coordinate surfaces of thh
coordinate are again simple spheres, with their centers b
a function ofh. Both the surface of the spherical WS ce
and the surface of the macroion correspond to oneh coordi-
nate surface. In the (h, u) system, this means that the regio
external to the macroion is arectangulardomain which is
confined byh0 ~surface of macroion! andh1 ~surface atR8)
andu50 andu5p.

The first two boundary conditions in Eq.~7! follow from
symmetry considerations, while the last two ones are
constant charge boundary conditions on the colloid~charge
Z) and the cell~charge densitysout).

IV. DENSITY PROFILES

We discretize Eq.~7! and solve it numerically@26#. The
nonlinearity is handled by a Newton-Raphson iterat
scheme. Our numerical scheme resembles that of Ca
et al. @5# where a detailed discussion of the numerical p
cedure to solve PB in bispherical coordinates can be fou

Concerning the choice of our coordinate system two f
ther comments are perhaps in order. First, a uniform grid
the domain of the bispherical coordinates leads to a part
larly high density of node points in the region where w
expect the variations of the ionic profile to be most p
nounced, namely, in the region where the colloidal parti
approaches the outer surface. Second, due to the steep s
of the profiles near the colloid surface, care must be ex
cised to have an sufficiently fine grid in this region. A coo
dinate that is not adapted to the spherical symmetry of
colloid, as, for instance, the usual Cartesian coordinate
tem, would invariably lead to material grid errors near t
curved surface of the colloidal sphere.

A simple uniform grid in the (h,u) plane proves to be
sufficient for relatively small macroionic charges (Z,500).
For higher charges, we use a nonuniform grid in the (h,u)
plane which, after each iteration cycle, is readjusted to
gradient of the density profile so as to ensure that the num
of node points corresponds to the steepness of the pro
The total number of node points is varied from 1000 up
4000 until a sufficient accuracy is achieved.
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Figure 2~a! displays a typical counterion density distribu
tion calculated from Eq.~7!. The volume of the WS cell
corresponds to a volume fraction of the colloidal suspens
of f50.05.lB is 7.2 Å. The macroion~radiusa5500 Å ) is
displaced a distance ofX50.69R; its charge isZ5600, and
the salt concentration is zero (S50). Figure 2~b! shows a cut
through the distribution of Fig. 2~a! along thex direction at
y50. Both figures reveal that the density distribution has
expected shape, with a thick layer of~‘‘condensed’’! coun-
terions in the vicinity of the macroion surface and an asy
metric valley between the colloidal surface and the ou
confining surface. Note that the density at the left-hand s
~LHS! of the colloid in Fig. 2~b! is significantly larger than
on the RHS. The charge asymmetry has a twofold effe
first, with the center of negative charge being different fro
the center of positive charge, the whole cell has an effec
dipole moment and there will be electric field lines inu
direction at the cell boundary. And, second, the osmo
pressure will also have an (h,u) dependence. Both will con
tribute to the electric stress tensor, and will lead to a
force directed towards the center of the WS cell.

A convenient way to check the implementation of t
numerical scheme is to consider the caseX50 and compare
the resultant profile with the solution to the BVP of Eq.~6!.
We have successfully performed these checks.

V. CAVITY FORCES AND FORCE CONSTANTS

The net force acting on the colloid inside the cell is t
accumulated force of all 12 neighbors that make up the ca
or cavity, atR8. To distinguish it in the following from the
pair forces, let us call this net cumulative force the ‘‘cavi
force.’’ It is the derivative ofF with respect toX, Eq. ~3!,

Fc~X!52
d

dX
F~X!, ~9!

whereF is calculated from the density profile using Eq.~2!.
Alternatively, we can calculate this force by means of t
stress tensor,

TWW 5S P1
e

8p
E2D IWW2

e

4p
EW EW , ~10!

which we have to integrate over a surfaceS that encloses the
central colloid,
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FW c5E
S
TWW •nW dS. ~11!

It is EW 5EueW u1EheWh52¹W C the electric field andP the
local osmotic pressure which is equal tokT(r11r2). The
vector nW is a unit vector directed normal to the surfaceS
~inward direction!. For convenience, we integrate over anh
coordinate surface (h5h2, with h1,h2,h0). Clearly, the
force is directed along thex axis and reads, when written i
the usual dimensionless form,

f 54plBbFc5pe2b2E
0

pF S 8p

eb
r 1Eu

22Eh
2 D

3~12cosu coshh2!12EuEhsinhh2sinuG
3

sinu

~coshh22cosu!3
du, ~12!

where all three functionsEu , Eh , andr depend on (h2 ,u).
As for the choice ofh2, the result should, in theory, b
independent ofh2. In practice, this is hard to achieve b
cause of numerical errors. They show up very clearly whef
is plotted as a function ofh2 which is a good method to
monitor the accuracy of the calculation.

Figure 3 shows the cavity forces as a function of the d
placementX obtained from the density profiles by integratio
of the stress tensor. We consider colloidal charges rang
from Z5200 toZ51400 in a suspension of volume fractio
f50.05 ~no salt!. The radius of the colloid isa5500 Å .
We carefully checked that our results are free from grid
rors. The numerical results have been double checked
calculating the cavity force via both routes, Eq.~9! and Eq.
~12!.

FIG. 3. Cavity forces~dimensionless! calculated from ion den-
sity distributions by integration of the stress tensor, as a functio
the displacementX of the central colloidal particle. Force curves fo
several charges of the macroion~no salt! are shown, together with
the linear forces~thin solid lines! calculated in the harmonic ap
proximation, Eq.~14! (a5500 Å , volume fractionf50.05).
-

g

-
by

It is instructive to compare these curves with the forc
calculated in the harmonic approximation whenX is small
and Fc becomes proportional to the displacement,Fc5kX.
The force constantk in turn is related to the static rigidityGs
through Gs5k/VWS ~see Ref.@18#; for the high frequency
shear modulus see Ref.@19#!. Interestingly, the force con
stants can already be found from the solutions to the us
spherical PB equation, Eq.~6!, as has been pointed out i
Ref. @27#. With F0 being the solution to Eq.~6!, integrated
up to R8 now, andr andu being the usual spherical coord
nates measured from the center of the cell, the electros
potential in linear approximation can be written in the for

F~r ,u!5F0~r !1F1~r !cosu, ~13!

where the functionF1 is proportional toX and does not
depend onu. Inserting this into the PB equation for the e
centric geometry and expanding the inhomogeneity of
differential equation up to first order leads to a linear diffe
ential equation forF1(r ) whose integration provides us wit
an integral representation ofF1 in terms of the known po-
tential F0 ~see Ref.@27#!. Evaluating then the stress tens
with the potential of Eq.~13! and performing the surface
integral, we find the following expression for the force
linear approximation:

4plBbFc~X!52
4p

3
XH E

a

R8214plBs2r~s!

s4F09
2~s!

dsJ 21

,

~14!

wherer(r ) is the counterionic concentration profile inr pro-
portional toeF0(r ). Note that the expression is given for th
salt-free situation only. Equation~14! now enables us to cal
culate forces for smallX from a simple BVP, namely, the
ordinary spherical BVP of Eq.~6!. This therefore represent
a way to determine forces that is completely independen
our way via the BVP in Eq.~7! and expression~12!. As is
evident from Fig. 3, the forces obtained from Eq.~14! give
the correct result for small displacements. This may be s
not only as a verification of our results, but also as a con
mation of Eq.~14! which indeed provides a simple way t
calculate force constants in colloidal crystals. Figure 3 a
reveals that theX range where this perturbation approach
valid becomes smaller with increasing charge.

VI. PAIR FORCES

We now want to use the cavity forces presented in the
section to estimate the effective colloid-colloid interactio
Integration of Eq.~9! provides us with the functionF(X)
which, for a convenient notation, we abbreviate in the f
lowing by U(X) @the constantF0 of Eq. ~4! cannot be found
by this integration and is set to zero in the following.# How
can we come fromU(X), the total interaction energy be
tween the central colloid and its 12 neighbors, to the eff
tive pair potentialsu(r ) between two dressed colloids?

Since we have replaced the 12 neighboring colloids b
spherical shell atR852R2a with a continuous charge
smeared out over the shell surface, we must assume
U(X) is related tou(r ) not via the usual discrete lattice sum
but through an integral of the following form:

f
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U~X!52p~2R!2E
0

p

u„r 8~X,u!…P~u!sinu du, ~15!

where r 8 is the distance between the shifted colloid in t
center and a point (f,u) ~spherical coordinates! on a spheri-
cal surface at 2R ~the centers of the neighboring colloids a
on the surface of a sphere at 2R). The integration overf is
already performed.P(u) is the probability of finding a
neighboring colloid at the outer surface and is simply eq
to 12/@4p(2R)2#. Realizing that r 825(2R cosu1X)2

1(2Rsinu)2, this integral can be further simplified and, aft
differentiation with respect toX, then provides us with the
relation

X]XU~X!1U~X!5
12

4R
@u~2R1X!~2R1X!1u~2R2X!

3~2R2X!#. ~16!

From this equation, we directly infer that there is no uniq
way to extract fromU the functional form ofu. We therefore
depend on ana priori assumption of this form, and this is, o
course, the assumption that for smallX, u should be Yukawa
like,

bu~r !5C
e2kr

r
, ~17!

with the two yet undetermined quantitiesk andC. Since we
consider the limitX→0, we expand either side of Eq.~16! to
fourth order and find

bU01
3

2
k2X21

5

4
k4X4512bu~2R!S 11

k2X2

2
1

k4X4

24 D ,

~18!

where

bU~X!5bU01k2X2/21k4X4/41•••. ~19!

Comparison of the coefficients in front ofX2 and X4 then
leads to

k2510
k4

k2
,

~20!

C5
3

10

k2
2

k4

2Re2kR

12
,

plus the obvious resultbU0512u(2R). Equation~20! thus
gives a relation between the screening parameterk and the
prefactor C, on the one hand, and the force constants
U(X) and their first anharmonic correction on the other.

With the parametersk and C thus determined, we hav
arrived at effective pair potentials that are consistent with
cavity forces calculated in our eccentric cell model. To de
onstrate that, we have plotted in Fig. 4 the total effect
potential energy, obtained from integrating the force cur
of Fig. 3, and compared it with the approximated ene
function,
l

e

f

e
-
e
s
y

bUtot~X!512C
e2k2R

k2R

sinhkX

X
, ~21!

which is obtained when the pair potential of Eq.~17! is in-
serted into Eq.~15!. Figure 4 confirms that the pair potentia
of Eq. ~17!, when superposed in the form of Eq.~15!, can
account for the calculated total energies over fairly a la
range of displacements. This, of course, can also be seen
statement about the validity of the expansion in Eq.~19!.

In Fig. 5, the potential parametersC andk are plotted as
a function of the structural colloidal chargeZ for two salini-
tiesS50 andS5200 (ns5331025M ). The Yukawa poten-
tial curvesbu(r ) of Eq. ~17! are plotted in Fig. 6. The cor
responding DLVO results are given for comparison. T
effective or renormalized values for the chargeZe f f and
screening constantk5@4plB(Ze f f12Se f f)/VWS#

1/2 in the
DLVO potential, Eq.~5!, have been calculated from the ce
tric PB profiles according the prescriptions of Alexand
et al. @9#

In Fig. 5, the standard DLVO or centric PB curves pres
the well-known saturation behavior of the renormaliz
charges, which, in turn, can be traced to the nonlinear p
nomenon of counterion condensation. This phenomenon
of course, also present in our calculation, as we have not
already in the density plots of Fig. 2. It comes to light a
other time in Fig. 3, where we observe that the force c
stants also appear to saturate with increasingZ. @With Eq.
~14!, this comes as no surprise, since the force constants
be obtained fromF0, the solution to the spherical PB equ
tion, and thus must also show saturation.# What is surprising,
however, is that not only the force constantk2, but also the
anharmonic constantk4 has this behavior. Both quantitiesk2
andk4 have the same dependence onZ. Sincek is related to
the ratio ofk4 /k2, Eq. ~20!, it must therefore become a con
stant. From Fig. 5 we learn that it is a constant over the en
Z range. Contrary to the screening parameters, compariso

FIG. 4. Total potential energy~in units of kT51/b) of the sys-
tem ~thick solid lines! as a function ofX as obtained from integrat
ing the cavity forces in Fig. 3. The dotted lines give an appro
mated energy derived from a superposition of Yukawa-like p
potentials; see Eq.~21!. The colloidal charge isZ5200, Z5500,
and Z51000. ForZ5200, two further calculations including sa
(S5200 andS5500) have been performed.
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the prefactors reveals only quantitative differences betw
both models: qualitatively the curves are similar, in partic
lar for S50.

In Fig. 6, it can be seen that for allZ, the difference
between our results and the DLVO pair potentials is cons
erable, mainly because of the differentZ dependence ofk.
At this point, it is important to note the difference betwe
our approach and that of Alexander et al. In the centric
ometry, there is no force calculation. Using the picture
Alexanderet al. to calculate the effective charges and putti
it in the DLVO potential is certainly an attractive, illustrativ
but nevertheless phenomenological approach. There is
proof that the pair force is correctly given by this procedu
In our eccentric geometry, we calculateF(X), a real force,
which, of course, is still based on a number of crude appro
mations. However, it is a force and can subsequently be

FIG. 5. Dependence of the screening parameterk ~a! and the
prefactorC ~b! of the Yukawa pair potential on the colloidal charg
for two different salt concentrations. The screening parameter
rived in the standard PB cell model~thick lines! depends on the
effective charge@9# and shows the typical saturation behavior d
to counterion condensation. In the eccentric cell model, the inte
tion between the double layers of the colloid and the outer sur
leads to a screening that is independent ofZ ~solid circles!.
n
-

-

-
f

no
.

i-
e-

composed into pair forces. Furthermore, we not only ta
account of the effect of counterion condensation, but all
for the overlap between the double layer of the central c
loid and the superposed layers of the cage colloids. We t
go beyond the centric model, and, accordingly, our pair
tentials should be nearer to the experimental data than th
calculated in the centric model.

To sum up, the result of Fig. 5 suggest that in the case
highly concentrated suspensions, where it is not sufficien
consider the interaction of two colloids well separated fro
the rest of the suspension, the multibody interaction betw
different colloids can result in a qualitatively differen
screening behavior, with a screening parameter that is
leading order independent ofZ. The total magnitude of the
potential is found to be somewhat different for high
charged spheres than predicted with the phenomenolog
renormalization scheme of Alexanderet al.

FIG. 6. Ion-averaged colloid-colloid pair potentials derived
the eccentric cell geometry~solid line! and using the effective-
charge concept@9# ~line with symbols! in the DLVO potential, for
three different values of the colloidal charge.

FIG. 7. The virial contribution of the colloidal particle to th
osmotic pressure of a charge-stabilized colloidal suspension.
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VII. OSMOTIC PRESSURE

Until now, we have focused on the forces acting on
particles. From our profiles, we can also extract informat
on the osmotic pressure. Treating polyions~mean densitynp)
and microions~densitynion) on equal footing~as one does in
the primitive model!, one would obtain the pressure from th
virial equation

bp5np1nion1
b

3V K (
p

RW pFW pL 1
b

3V K (
i

rW iFW i L ,

~22!

whereRW p , rW i andFW p , FW i are the positions of and the force
on the polyions and the microions, respectively. In the c
tric PB cell model the polyions are frozen in a perfect f
configuration; thus the forces on the colloidal particles
zero. The rest of Eq.~22! then reduces to just the microio
density at the cell edge,

bp5r ion~R!. ~23!

In the eccentric cell model considered here, the fcc lattic
not perfect and the forces on the colloidal spheres do
vanish. We therefore have the possibility to estimate the
ror made by neglecting the contribution of the colloids to t
osmotic pressure@third term in Eq.~22!#. With the forces
Fc(X) of Eq. ~11!, we can calculate

b

3N
^XW •FW c~X!&5

b

3N

E XFc~X!e2bU(X)X2dX

E e2bU(X)X2dX

, ~24!
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whereN is the total number of microions in our cell. Thi
can be compared with the contribution of the microions
the osmotic pressure coefficient,r(R)/(N/VWS). Figure 7
shows that (b/3N)^XW •FW c(X)& drops rapidly from 1023 for
Z5100 to 1024 for Z51000. This compares to values fo
r ion(R)/(N/VWS), Eq.~23!, dropping in the same range from
0.9 to 0.3, so that the contribution of the colloids to t
osmotic pressure ranges between 1023 and 1024. This, in-
deed, is a negligible quantity.

VIII. CONCLUSION

We have calculated the force that is experienced b
charged colloid inside a spherical charged cavity filled w
an electrolyte. This force results from the overlap of the co
vex double layer around the colloidal particle and the co
cave double layer near the confining sphere. This conc
double layer—and that is the key idea of this paper—is
approximation for the form of a double layer that resu
from the superposition of double layers of all 12 neighbo
The total force on the center colloid has subsequently b
decomposed into effective pair forces, which thus gives
approximation of the effective ion-averaged potential in t
high concentration limit, where the pairwise interaction b
tween any two colloids is strongly influenced by the prese
of all other polyions in the suspension. Comparing t
charge dependence of the screening parameter in both
centric and the concentric PB cell models, we have fou
that the screening behavior in this high concentration lim
shows a qualitatively different screening behavior. We ha
furthermore, calculated the force constants and the an
monic correction terms, and considered the contribution
the colloidal particles to the osmotic pressure of the susp
sion.
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