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Eccentric Poisson-Boltzmann cell model
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We solve the nonlinear Poisson-Boltzmann equation around a charged colloidal sphere in an electrolyte that
is confined in a cell. The colloid has an eccentric position inside the confining sphere. This models the situation
in a highly concentrated charge-stabilized colloidal suspension, where a single colloid simultaneously interacts
with the whole cage of neighboring colloids. We calculate the ion density profiles, the free energy, and the
osmotic pressure as a function of the shifting position. We express the total force acting on the particle as a
sum of pair contributions and compare the resulting pair interaction potential law with the standard Derjaguin-
Landau-Verwey-Overbeck expression.

PACS numbegps): 61.20.Qg, 82.45:z

[. INTRODUCTION force between two particles will depend also on the positions
of all other polyions. Thus, the problem becomes rather in-
In charged colloidal or polyelectrolyte solutions, there arevolved, not only for the technical problems posed by the
three different types of particles: polyions, microions, anddemanding nonlinear PB equation, but also because, in prin-
the molecules of the solvent. Due to the enormous size andiple, the total interaction can no longer be split into pairwise
charge asymmetry between these three species, not all obntributions.
them are equally important for the interpretation of the ex- In the present article we concentrate on this high concen-
perimental data. In light scattering experiments, for instancetration limit. In a complete PB theory one would have to
it is only the time-averaged positions of the mesoscopicolve the nonlinear PB equation in the interstitial regions
polyions that is of significance to the measured structure facbetween all colloidal spheres for each possible colloidal con-
tors. In many cases it is therefore sufficient to give an effecfiguration. This requires a formidable numerical treatment
tive one-component description of the mixture, that is, to[16,17]. We rather investigate a simpler geometry made of a
treat the polyion plus its microionic atmosphere as onesingle colloid interacting with the entire cage of surrounding
dressed particle that moves in a dielectric medjdmnIn this  polyions. To model this situation, we consider a charged
approach, the central question is to know about the solvertolloid located at eccentric positions inside a hollow charged
and microion-averaged or effective potential between thesephere. The inhomogeneous electrolyte fills the volume be-
dressed particle2—4]. tween the two nonconcentric surfaces. The confining sphere
In highly diluted suspensions with added salt, the colloidsrepresents the fixed cage of next neighbors of a colloid in the
interact essentially by pairs. The effective pair potentialsuspension. Next to this outer sphere another double layer of
which results from the overlap of two ionic double layers canmicroions will be formed, which may be regarded as the
be calculated in a good approximatifor monovalent ions  superposed double layers of all neighbors defining the cage.
from the nonlinear Poisson-BoltzmariRB) equation[5,6].  The overlap of this concave layer with the convex layer
At large separation, the weak overlap or linear superpositiomround the center colloid leads to a repulsive force which
approximation applies and the potential takes the usualrives the colloid back toward the center of the cell. We
screened-Coulombic Yukawa Derjaguin-Landau-Verwey-calculate this force and related quantities by solving the PB
Overbeck (DLVO) form [7]. In this expression, the bare equation for the electrostatic potential and ionic profiles in
charge is replaced by the effective value which accounts fothe eccentric cell geometry. A similar problem can be found
the electrostatic condensation of counterions near the coln an old study by Ohtsuki et gl18] where the electrostatic
loids and which can be deduced from the PB solution aroungotential around a particle in an ordered latex under a defor-
one isolated particld8,9,1,140. The DLVO potential has mation has been numerically calculated.
been extensively used to describe the phase behglddy The total force acting on the central colloid is not a pair
structure[12,13, dynamics[14], and electrokinetic proper- force but the accumulated force of all neighbors onto the
ties[15] of charged colloidal suspensions, even outside theenter colloid. However, we suggest a way how this force
dilute regime. However, for concentrated and/or salt-free soean again be decomposed into pair forces. The resulting pair
lutions, this asymptotic pair potential becomes, in principle,potentials can be compared to the pair potentials derived in
incorrect: first, the linear superposition approximation breakshe conventional way from the overlap of two spherical
down due to the strong overlap of the double layers and oflouble layers with positive curvature. We thus end up with
the condensation shells at short separat[®fismore impor-  an effective ion-averaged potential for two colloids interact-
tantly, many simultaneously overlapping layers lead to effecing in the immediate neighborhood of other colloids, the in-
tive forces that are essentially many body in nature; i.e., théluence of whose double layers on the interaction of the two
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colloids we explicitly take into account. This approach, ofwith E being the total electric field and the thermal de
course, makes sense only in highly concentrated suspensiorgroglie wavelength. The first term is the Coulomb energy of
From these considerations, it should be clear that we have i@ charged colloids and their microions, while the second
expect a qualitatively different behavior of the effective in- term takes account of the ideal-gas entropy of mixture of the
teraction. discrete microions. The Boltzmann profiles are those which
After setting the stage for our considerations in Sec. I, weminimize the free energy of Eq2) seen as a functional of
introduce in Sec. Il our mOdel, which we call the “eccentric the variational densitieﬁi(r) (at fixed total ionic Contemt

cell model,” and present in Sec. IV the calculated density The forceE; acting on colloidj derives from the free
profiles. From these, we determine in Sec. V the forces b ergy: !

integrating the stress tensor, and decompose these into pair
forces in Sec. VI. Before the conclusion, we shortly discuss
in Sec. VIl the osmotic pressure of the suspension in the Fi=—V,7{R}). (3)
eccentric cell model.

Both the free energyF and the forceslfj are complex

Np-body quantities which, in general, cannot be decomposed
We consider a colloidal suspension madeNgfspherical ~ as sums of pair contributions. Meanwhile, for conceptual and

charged colloids. Their density ig,=N,/V=1Nys, where practical reasons, it is interesting to define the effective pair

Vwsis the volume per colloid or, in the crystalline phase, thepotentialv®’" which, when being summed over all interpar-

volume of the Wigner-SeitzWs) cell. Each colloidal par- ticle distancesR;;=|R;—R;|, gives the best approximation

ticle bears a charge of Ze. Assuming, for simplicity, that possible to the energy of E(R),

the charge of a counterion ise, each colloid thus contrib-

utesZ counterions to the solution, giving in totdl.=ZN,

counterions and hence a counterion densityngfEN_./V. f({ﬁi})%fo+2 Ueff(Rij)_ (4)

Additionally, we allow for a binary symmetrical 4/1 salt of i<j

concentratiomg=S/V\ g to be present wherg8is the num-

ber of positive/negative salt ions in the Wigner-Seitz cellThe term,, independent of the colloidal positions, is irrel-

volume. As usual, the solveritvate) is assumed to be a eyant for the interactions and forcg20,21].

continuum of dielectric constard (primitive mode), while In the weak overlap approximation valid at large interpar-

the microions are considered to be pointlike particles. ticle distances, the microionic density distributions turn out
Mapping the initial multicomponent system onto an effec-tg pe given by sums over independent distributions around

tive one-component system made of dressed colloids, Wgpolated colloids and the pairwise decomposition, E4),

may write the total free energy for a given positifR;} of  applies. Placing this sum into the free energy expression, Eq.

all N, colloidal particles in the form¥({R;}). The average (2), gives for the effective pair potential the DLVO form

over the degrees of freedom of the microions, implicitly

taken into account i, is performed here within the mean-

field PB approximation. The microion-microion correlations

are neglected and the inhomogeneous ionic density profile!

p.(r) andp_(r) in the external field of the macroioffixed

at{lféi}) are related to the normalized averaged electrostatic

potential ® through the mean-field Boltzmann relations

p;(F)ocexp[tQD(F)]. The PB equation reads

II. POISSON-BOLTZMANN THEORY

V20(r)=4mNg[p_(1)—p.(r)]

etb(?) e—cb(F)

=4m\g| (Ng+nNg)

o ()

— —Ng =
<e®(r)> <e*‘I>(r)>

whered® =epBV is the electrostatic potentialg=e?s/ e the
Bjerrum length, ang3= 1/kgT the inverse temperature. The
volume averagetbracket$ guarantee the total ionic conser-
vation (fixed salinity inside the solution The PB total free
energy of the solution which depends on the colloidal con-
figuration read$7]

R T e ) FIG. 1. The eccentric cell model: a positively charged colloid is
FUR}= f dr’[S—Ez(r ") shifted a distanc& from the center of a spherical cage. The outer
m surface bears a positive surface charge densjty. The cavity
radius R’ =2R—a wherea is the radius of the colloid an® is
+ 2 pa(F’)kBT[|n{A3pa(F')}— 1]}, 2) defined_through_the volume per colloidy,s=47R%3. The shell of
a=+ next neighbors is atR.
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Ka 2 e—KR
eff —
= —_— >
Bve(R) (zeffHKa Ne—g—. R>2a, (5)

with a being the radius of the colloidal sphere ard
=[4mg(n.+2ng)]Y? the inverse screening length.

The effective charg&.;; in Eq. (5) is equal to the bare
chargeZ within the linear PB(Debye-Hickel) theory and is
much lower tharZ in the nonlinear theory due to the coun-
terionic condensation. At small interparticle distances ob-
served in concentrated solutions, the DLVO potential is, in
principle, less valid and the pairwise decomposition, @g.
though practical, is more approximative.

Ill. ECCENTRIC CELL MODEL o~ 0.8

0.7

We see from Eq(2) that, in principle, one has to solve the mg 0.6

multicentered PB equation for every possible colloidal con- 0.5

figuration. Though not impossiblel6,17], this can only be 0.4

achieved with a large scale computer simulation. Contrary to - gg

that, the basic idea of the PB cell model is convincingly easy. S0 1

There, only one specific colloidal configuration is consid- ©

ered, namely, the fcc configuration of the crystalline phase, 0 TR 00 b s

so that due to the translational symmetry the nonlinear PB

equation for the microionic density distribution needs to be FIG. 2. (a) Typical ion density distribution as calculated from

calculated in one WS cell only. the mean-field Poisson-Boltzmann equation for a colloidal macro-
Assuming the WS cell to be of spherical shapadiusR ion in the eccentric geometrZ& 600, a=500 A, volume fraction

defined via 47R%/3=V,,g, the problem then reduces to ¢=0.05,X=0.6®R, S=0, \g=7.2 A). (b) A cut aty=0 along

solving the radial one-dimensional PB equation and one ighe x axis for the distribution ofa). Units are inR throughout.

left with the following von Neumann boundary value prob-

are kept fixed, one expects that the normal electric field is
lem (BVP):

zero atr>R in the sense of the shift and akR in the
opposite senser(is measured from the center of the gell
We therefore enlarge the spherical cell to a radils- 2R

—a and consider thevhole cageconsisting of all 12 neigh-
bors (at 2R) around the central colloid, rather than the cen-
tral WS cell alone, because the position of the whole cage

erp(F) e—qv(r")

1
—zarrzar®(r):4m\5 (Ng+ng)

— —Ng — |,
r <e<1>(r)> <e—<1>(r)>

P (r)]-r=0, ©) will certainly not depend orX. The 12 neighbors are re-

placed by a spherical charged surfac®athat is concentric

3, D(1)], o= — ﬂ with the original WS spher¢see Fig. 1 This leads to the
r r=a 2 !

picture presented in the introduction: a single colloid trapped
in the spherical cage of its nearest neighbors. The procedure
where the first boundary value reflects the fact that the W3n practice is the following: in a first step, the centered PB
sphere as a whole is electrically neuttall Z counterions are  solution ®(r) of the BVP in Eq.(6), unperturbed in the
inside R) and the second is just the constant-charge boundsentral WS celr <R, is extended untit =R’ by integrating
ary condition at the colloid surface commonly used for col-the same PB equation from=R to r=R’. The nonzero
loidal particles. This classical cell approach is powerful toelectric field atr=R’ gives, with the Gauss theorem, the
derive ionic profiles, osmotic pressures, and effectivesurface charge density,,; of the outer cell surfacédue to
charges in concentrated solutions. On the other hand, due the finite spherical curvature of the configuratier,,; dif-
its spherical symmetry, it is unsuited for deriving directly fers from the colloidal surface charge density ata). Then,
colloidal forces and colloid-colloid interactions. in the eccentric geometry, this charge density and the corre-
The idea of our eccentric cell modédee Fig. 1 may be  sponding normal electric field at=R’ are kept fixed as the
seen as an extension of this centric PB cell model. We alseentral colloid is shifted away from its initial position. This
start from the assumption that all macroions are initially lo-choice for the boundary condition matches closely what hap-
cated at fcc lattice sites. However, in contrast to the convenpens in a real cage while keeping the spherical cell geometry.

tional cell model, we allow one colloid to be shifted a dis-
tanceX from its center position. Calculating for eaghthe
PB profiles, one can then determifie Eq. (2), and, from its
derivative, Eq.(3), directly the force acting on the colloid.

Since there is still a rotational symmetry about the line

joining the center of the WS sphere and the center of the

colloidal particle, Eq(1) for our case is a differential equa-
tion in two spatial variables. As has been done by others

Of crucial importance is a physically motivated choice of before[5,22—24, we express the PB equation in bispherical

the boundary condition: The boundary conditiorRain Eq.

coordinate$25] since they are symmetry adapted to the geo-

(6) cannot be copied in the eccentric geometry. Since thenetric situation of the eccentric cell model. The BVP for the

central colloid is shifted a distancewhile the 12 neighbors

eccentric cell model then reads
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e(b(ﬁvo) e—(b(n,ﬁ)

) (e

(coshy—cos6)® siné siné
b2sin @ é”coshn— cos " a”coshr;— cosf

39®(7,0)|9=0=0,
3¢ (7,0)|9=»=0,

Z\g b (7)

22 coshyp—cosé’

b
coshn—cosé’

(Ns+nNc)

(3’9)@(77,6)24777\5

3,0 (7,0)] o=~

anq)( 7, 0)| n= 771=4770'0ut)\B

where Figure 2a) displays a typical counterion density distribu-
_ tion calculated from Eq(7). The volume of the WS cell
b=asinhz,. (8 corresponds to a volume fraction of the colloidal suspension

. . . . _ _ of $=0.05.\g is 7.2 A. The macroiottradiusa=500 A ) is
Like spherical coordinates, bispherical coordinates have twaisplaced a distance of=0.6%R; its charge iZ =600, and

angle coordinates andy and a third coordinate) that has  yhe sait concentration is zer640). Figure 2b) shows a cut
the character of a radius; i.e., the coordinate surfaces of the through the distribution of Fig.(2) along thex direction at
coordinate are again simple spheres, with their centers being_ ; "goth figures reveal that the density distribution has the
a function of . Both the surface of the spherical WS cell expected shape, with a thick layer @tondensed’) coun-
and the surface of the macroion correspond to grewordi- - terions in the vicinity of the macroion surface and an asym-
nate surface. In therf, 6) system, this means that the region megric valley between the colloidal surface and the outer,
external to the macroion is @ectangulardomain which is  ¢onfining surface. Note that the density at the left-hand side
confined byz, (surface of macroionand 7, (surface aR’) (| Hs) of the colloid in Fig. Zb) is significantly larger than
and =0 andf=. o on the RHS. The charge asymmetry has a twofold effect:
The first two boundary conditions in E() follow from first with the center of negative charge being different from
symmetry considerations, while the last two ones are thene center of positive charge, the whole cell has an effective
constant charge boundary conditions on the collaidarge  gipole moment and there will be electric field lines én

Z) and the cellcharge densityro,y). direction at the cell boundary. And, second, the osmotic
pressure will also have am(6) dependence. Both will con-
IV. DENSITY PROFILES tribute to the electric stress tensor, and will lead to a net

force directed towards the center of the WS cell.
nonlinearity is handled by a Newton-Raphson iteration A c_onvenlent way to che_ck the implementation of the
numerical scheme is to consider the cXse0 and compare

scheme. Our numerical scheme resembles that of Carn ) . -
et al. [5] where a detailed discussion of the numerical pro—h:\ﬁe resultant profile with the solution to the BVP of K@).

cedure to solve PB in bispherical coordinates can be foun We have successfully performed these checks.
Concerning the choice of our coordinate system two fur-

ther comments are perhaps in order. First, a uniform grid in V. CAVITY FORCES AND FORCE CONSTANTS

the domain of the bispherical coordinates leads to a particu-

larly high density of node points in the region where we

expect ;he varl?thnsﬂ?f the' |on|chprof|tlﬁ to lIJIe_dm;)st Fz.rol'or cavity, atR’. To distinguish it in the following from the
hounced, namely, In the region where the cofloldal partiCie, ;. t4rcas et us call this net cumulative force the “cavity

approaches the outer surface. Second, due to the steep slo Sie.” It is the derivative ofF with respect toX, Eq. (3)
of the profiles near the colloid surface, care must be exer- ' T

cised to have an sufficiently fine grid in this region. A coor- d
dinate that is not adapted to the spherical symmetry of the Fo(X)=——<F(X), 9
colloid, as, for instance, the usual Cartesian coordinate sys- dX

tem, would invariably lead to material grid errors near the ) ) ) )
curved surface of the colloidal sphere. whereF is calculated from the density profile using E@).

A simple uniform grid in the @,6) plane proves to be Alternatively, we can calculate this force by means of the

sufficient for relatively small macroionic charge&<500).  SUress tensor,
For higher charges, we use a nonuniform grid in the#)

plane which, after each iteration cycle, is readjusted to the -
gradient of the density profile so as to ensure that the number

of node points corresponds to the steepness of the profile.

The total number of node points is varied from 1000 up towhich we have to integrate over a surfé&that encloses the
4000 until a sufficient accuracy is achieved. central colloid,

We discretize Eq(7) and solve it numerically26]. The

The net force acting on the colloid inside the cell is the
accumulated force of all 12 neighbors that make up the cage,

€

oy EE, (10

Im+

E2>F—
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| . l . It is instructive to compare these curves with the forces
calculated in the harmonic approximation wh¥rns small

and F. becomes proportional to the displacemert=kX.

The force constark in turn is related to the static rigidit§
through Gg=k/V\ys (see Ref[18]; for the high frequency
shear modulus see Rdf19]). Interestingly, the force con-
stants can already be found from the solutions to the usual
spherical PB equation, Ed6), as has been pointed out in
Ref.[27]. With &, being the solution to Eq6), integrated

up toR’ now, andr and # being the usual spherical coordi-
nates measured from the center of the cell, the electrostatic
potential in linear approximation can be written in the form

D(r,0)=Dy(r)+D4(r)coss, (13

=0.5 0.0 where the functiond, is proportional toX and does not
X / R depend or¥. Inserting this into the PB equation for the ec-
centric geometry and expanding the inhomogeneity of the
differential equation up to first order leads to a linear differ-
Ential equation forb,(r) whose integration provides us with

FIG. 3. Cavity forceddimensionlesscalculated from ion den-
sity distributions by integration of the stress tensor, as a function o
the displacemerX of the central colloidal particle. Force curves for

: .. an integral representation df, in terms of the known po-
several charges of the macroi¢mo sal} are shown, together with tential @, (see Ref[27]). Evaluating then the stress tensor
the linear forceqthin solid lineg calculated in the harmonic ap- : 0 ! - Evaluating

proximation, Eq.(14) (a=500 A, volume fractionp=0.05). With the pote.ntial of Eq-(13) and perfo'rming the surfacg
integral, we find the following expression for the force in

linear approximation:

> 3 -

Fcsz-ndS. (17
S

41

12+ A4m\pS°p(S -t
4w)\BﬁFC(X)=—?X|fR ’T—B”()ds] ,

. N - > C . a S4CD”2(S)
It is E=Eqe,+E,e,=—VV the electric field andlI the 0
local osmotic pressure which is equalkd(p,+p_). The

vector n is a unit vector directed normal to the surfaBe Wherep(r) is the counterionic concentration prof“en'rpro_
(inward direction. For convenience, we integrate over an  portional toe®o("). Note that the expression is given for the
coordinate surfaces(= 7,, with 7;<7,<17,). Clearly, the  sajt-free situation only. Equatioil4) now enables us to cal-
force is directed along the axis and readS, when written in culate forces for smalK from a simp'e BVP, name'y' the
the usual dimensionless form, ordinary spherical BVP of Eq(6). This therefore represents
a way to determine forces that is completely independent of
= | 8w our way via the BVP in Eq(7) and expressioli12). As is
f=4m\gBF.= WEZ'BZL {(; p+EG- E%) evidentyfrom Fig. 3, the fo?ces obtainepd from Ef4) give
the correct result for small displacements. This may be seen
not only as a verification of our results, but also as a confir-
mation of Eq.(14) which indeed provides a simple way to
calculate force constants in colloidal crystals. Figure 3 also
reveals that theX range where this perturbation approach is
de, (120  valid becomes smaller with increasing charge.
(coshy,—cos#)?

(14)

X (1—cosé coshz,) + 2E4E ,sinh7,sin g

siné

. VI. PAIR FORCES
where all three functiongy, E,,, andp depend on §,,0).

As for the choice ofz,, the result should, in theory, be  We now want to use the cavity forces presented in the last
independent ofy,. In practice, this is hard to achieve be- section to estimate the effective colloid-colloid interaction.
cause of numerical errors. They show up very clearly when Integration of Eq.(9) provides us with the functiod(X)
is plotted as a function ofy, which is a good method to which, for a convenient notation, we abbreviate in the fol-
monitor the accuracy of the calculation. lowing by U(X) [the constaniF, of Eq. (4) cannot be found
Figure 3 shows the cavity forces as a function of the dis-by this integration and is set to zero in the followihglow
placemeni obtained from the density profiles by integration can we come fromJ(X), the total interaction energy be-
of the stress tensor. We consider colloidal charges rangintyveen the central colloid and its 12 neighbors, to the effec-
from Z=200 toZ=1400 in a suspension of volume fraction tive pair potentiala(r) between two dressed colloids?
¢$=0.05 (no salj. The radius of the colloid i®=500 A . Since we have replaced the 12 neighboring colloids by a
We carefully checked that our results are free from grid erspherical shell atR’=2R—a with a continuous charge
rors. The numerical results have been double checked bgmeared out over the shell surface, we must assume that
calculating the cavity force via both routes, Ef) and Eq.  U(X) is related tau(r) not via the usual discrete lattice sum,
(12). but through an integral of the following form:
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U(X)= zw(ZR)Zfowu(r "(X,0))P(0)sinddo, (15)

wherer’ is the distance between the shifted colloid in the

center and a pointd, 8) (spherical coordinat¢®n a spheri-

cal surface at R (the centers of the neighboring colloids are g

on the surface of a sphere aRP The integration ovee is
already performedP(6) is the probability of finding a

neighboring colloid at the outer surface and is simply equal

to 12[4m(2R)?]. Realizing that r’?=(2Rcosé+X)?

+(2Rsin#)?, this integral can be further simplified and, after
differentiation with respect tX, then provides us with the

relation

XayU(X)+U(X)= %[U(ZR+ X)(2R+ X)+ u(2R—X)

X(2R—=X)]. (16)
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400
300+
- .
Q200 1

100+

0_

05
X/R

FIG. 4. Total potential energgin units ofkT=1/8) of the sys-
tem (thick solid lineg as a function oiX as obtained from integrat-

0.0

From this equation, we directly infer that there is no uniqueing the cavity forces in Fig. 3. The dotted lines give an approxi-

way to extract fromJ the functional form ofu. We therefore

mated energy derived from a superposition of Yukawa-like pair

depend on aa priori assumption of this form, and this is, of Ppotentials; see E¢21). The colloidal charge i¥ =200, Z=500,

course, the assumption that for sméllu should be Yukawa
like,

—KI

Bu(n=C——,

17

with the two yet undetermined quantitiesandC. Since we
consider the limiX— 0, we expand either side of E(L.6) to
fourth order and find

U 3kx2 5kX4—1 2R)| 1 X
BUot 5koX+ 7K X'=128uU(2R)| 1+ ——+ — |,
(18)

where
BU(X)=BUg+ kX224 Kk XHA+ - - - (19

Comparison of the coefficients in front & and X* then
leads to

k2= 10t—z,
(20
3 k3 2Re*R
10k, 12

plus the obvious resulBU,=12u(2R). Equation(20) thus
gives a relation between the screening parametand the

and Z=1000. ForZ=200, two further calculations including salt
(S=200 andS=500) have been performed.

Ll X) = 190 e %2R sinhk X

(21)

which is obtained when the pair potential of EG7) is in-
serted into Eq(15). Figure 4 confirms that the pair potentials

of Eq. (17), when superposed in the form of E@.5), can
account for the calculated total energies over fairly a large
range of displacements. This, of course, can also be seen as a
statement about the validity of the expansion in Bd).

In Fig. 5, the potential paramete@and « are plotted as
a function of the structural colloidal chargefor two salini-
tiesS=0 andS=200 (n;=3X 10 °M). The Yukawa poten-
tial curvespu(r) of Eq. (17) are plotted in Fig. 6. The cor-
responding DLVO results are given for comparison. The
effective or renormalized values for the charggs;; and
screening constank=[47Ag(Zet1+ 2Ses1)/ Vsl ¥ in the
DLVO potential, Eq.(5), have been calculated from the cen-
tric PB profiles according the prescriptions of Alexander
et al.[9]

In Fig. 5, the standard DLVO or centric PB curves present
the well-known saturation behavior of the renormalized
charges, which, in turn, can be traced to the nonlinear phe-
nomenon of counterion condensation. This phenomenon is,
of course, also present in our calculation, as we have noticed
already in the density plots of Fig. 2. It comes to light an-
other time in Fig. 3, where we observe that the force con-
stants also appear to saturate with increagingwith Eq.

prefactor C, on the one hand, and the force constants of(14), this comes as no surprise, since the force constants can

U(X) and their first anharmonic correction on the other.

be obtained fromb, the solution to the spherical PB equa-

With the parameters and C thus determined, we have tion, and thus must also show saturatidfVhat is surprising,
arrived at effective pair potentials that are consistent with thdnowever, is that not only the force constdnt but also the
cavity forces calculated in our eccentric cell model. To dem-anharmonic constarki, has this behavior. Both quantiti&s
onstrate that, we have plotted in Fig. 4 the total effectiveandk, have the same dependencedrSincex is related to
potential energy, obtained from integrating the force curveshe ratio ofk,/k,, Eq.(20), it must therefore become a con-
of Fig. 3, and compared it with the approximated energystant. From Fig. 5 we learn that it is a constant over the entire

function,

Z range. Contrary to the screening parameters, comparison of
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FIG. 6. lon-averaged colloid-colloid pair potentials derived in
2)(]04 A 1 . ] A 1 the eccentric cell geometrysolid line) and using the effective-

charge concei9] (line with symbol$ in the DLVO potential, for
three different values of the colloidal charge.

composed into pair forces. Furthermore, we not only take
account of the effect of counterion condensation, but allow
for the overlap between the double layer of the central col-
- loid and the superposed layers of the cage colloids. We thus
go beyond the centric model, and, accordingly, our pair po-
tentials should be nearer to the experimental data than those
calculated in the centric model.

To sum up, the result of Fig. 5 suggest that in the case of
highly concentrated suspensions, where it is not sufficient to
consider the interaction of two colloids well separated from
0- T T r T r ) the rest of the suspension, the multibody interaction between
0 500 1000 1500 differer)t coIIoids. can .result in a qualitatively differept

screening behavior, with a screening parameter that is to
(b) Z leading order independent @ The total magnitude of the
potential is found to be somewhat different for highly

FIG. 5. Dependence of the screening parametéa) and the . . ?
prefactorC (b) of the Yukawa pair potential on the colloidal charge charged _sph_eres than predicted with the phenomenological
renormalization scheme of Alexandet al.

for two different salt concentrations. The screening parameter de-
rived in the standard PB cell modéhick lines depends on the

effective chargd9] and shows the typical saturation behavior due A L L L L |
to counterion condensation. In the eccentric cell model, the interac-
tion between the double layers of the colloid and the outer surface 8)(]0-4 = B
leads to a screening that is independenZ gfolid circles. Z

the prefactors reveals only quantitative differences betweerery 6x] 0—4 i n

both models: qualitatively the curves are similar, in particu- ~~ X

lar for S=0. A\ 1 I
In Fig. 6, it can be seen that for all, the difference -4 _ L

between our results and the DLVO pair potentials is consid- 4x10

erable, mainly because of the differentdependence ok. e ]
At this point, it is important to note the difference between enl 4 | |
our approach and that of Alexander et al. In the centric ge- Vv 2x10

ometry, there is no force calculation. Using the picture of ]
Alexanderet al.to calculate the effective charges and putting

it in the DLVO potential is certainly an attractive, illustrative 0 ' I ' I ' |
but nevertheless phenomenological approach. There is n 0 500 1000 1500
proof that the pair force is correctly given by this procedure. Z

In our eccentric geometry, we calculdt€X), a real force,
which, of course, is still based on a number of crude approxi- FIG. 7. The virial contribution of the colloidal particle to the
mations. However, it is a force and can subsequently be desmotic pressure of a charge-stabilized colloidal suspension.
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VII. OSMOTIC PRESSURE whereN is the total number of microions in our cell. This
can be compared with the contribution of the microions to

U_ntiI now, we have fpcused on the forces ac_ting on t.hethe osmotic pressure coefficieni(R)/(N/V\g. Figure 7
particles. From our profiles, we can also extract information h that B/3N)(X- (X)) d dly f 108 §
on the osmotic pressure. Treating polyidnean density,) 5 v 112 RBIBN){X-F (X)) drops rapidly from or

and microiongdensityn;,,,) on equal footingas one does in Z=100 to 10 for 2=1000. This compares to values for
on . . .
the primitive model, one would obtain the pressure from the Pion(R)/(N/Vw9), Eq. (23), dropping in the same range from

. ) 0.9 to 0.3, so that the contribution of the colloids to the
virial equation

osmotic pressure ranges between 3@nd 10 “. This, in-
B B deed, is a negligible quantity.
Bp=ny+Njg,+ W< Ep: Rpr> +W<§|: riFi> ,
(22)

VIIl. CONCLUSION

We have calculated the force that is experienced by a

s charged colloid inside a spherical charged cavity filled with
on the polyions and the microions, respectively. In the cen@? electrolyte. This force results from the overlap of the con-
vex double layer around the colloidal particle and the con-

tric PB cell model the polyions are frozen in a perfect fcc double | h fini h Thi
configuration; thus the forces on the colloidal particles arg:2ve double fayer near the contining sphere. 1his concave

. .~~~ double layer—and that is the key idea of this paper—is our
Zero. The rest of Eq22) then reduces to just the microion approximation for the form of a double layer that results
density at the cell edge,

from the superposition of double layers of all 12 neighbors.
BP=pion(R) (23) The total force on the center colloid has subsequently been
tomt e decomposed into effective pair forces, which thus gives an

In the eccentric cell model considered here, the fcc lattice igPProximation of the effective ion-averaged potential in the
not perfect and the forces on the colloidal spheres do ndtigh concentration limit, where the pairwise interaction be-
vanish. We therefore have the possibility to estimate the effWeen any two colloids is strongly influenced by the presence
ror made by neglecting the contribution of the colloids to the®f 2!l other polyions in the suspension. Comparing the

osmotic pressuréthird term in Eq.(22)]. With the forces charge dependence of the screening parameter in both the
F.(X) of Eq. (11), we can calculate centric and the concentric PB cell models, we have found
C . ’

that the screening behavior in this high concentration limit
shows a qualitatively different screening behavior. We have,

Whereﬁp, Fi and pr, Ifi are the positions of and the force

f XF(X)e P24 X furthermore, calculated the force constants and the anhar-
ﬁ()z. Fo(X))= B , (240  monic correction terms, and considered the contribution of
3N 3N f —BUx2q X the colloidal particles to the osmotic pressure of the suspen-
€ sion.
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